Optical properties of nanocrystalline Y2O3:Eu depending on its odd structure.

نویسندگان

  • Wei-Wei Zhang
  • Wei-Ping Zhang
  • Ping-Bo Xie
  • Min Yin
  • Hou-Tong Chen
  • Long Jing
  • Yun-Sheng Zhang
  • Li-Ren Lou
  • Shang-Da Xia
چکیده

The structure of nanocrystalline Y2O3:Eu prepared by a combustion reaction was analyzed by XRD and high-resolution electron microscopy. Compared with a large-scale particles, 5-nm Y2O3:Eu particles presented as distorted crystallite and rough surfaces. Luminescent and absorption properties of nano-Y2O3:Eu showed remarkably particle size effects. At Y2O3:Eu particle sizes smaller than 10 nm some new results were observed: (a) a red shift of the charge-transfer-state absorption; (b) new emission bands of Eu3+ in the 5D0 --> 7F2 region; (c) luminescent decay of energy level 5D0 of Eu3+ turning to a two-step exponential; and (d) a pronounced increase in quenching concentration and much lower phonon density compared with those of the bulk material. All these phenomena can be attributed to the effect of the softened lattice and surface state of the nanomaterial. The latter was confirmed by stronger excitation by the host absorption after the surface modification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic Structure and Optical Quality of Nanocrystalline Y2O3 Film Surfaces and Interfaces on Silicon

Nanocrystalline yttrium oxide (Y2O3) thin films were made by sputter deposition onto silicon (100) substrates keeping the deposition temperature fixed at 300 °C. The surface/interface chemistry, Y−O bonding, and optical constants of the Y2O3 film surface and Y2O3−Si interface were evaluated by the combined use of X-ray photoelectron spectroscopy (XPS), depth-profiling, and spectroscopic ellipso...

متن کامل

Optical and fluorescent properties of Y2O3 sol–gel planar waveguides containing Tb3+ doped nanocrystals

Terbium doped Y2O3 planar waveguides were fabricated by sol–gel process and dip-coating using yttrium acetate as precursor. Two different doping modes were compared, i.e. introduction in the sol of dispersed Tb3+ions from dissolved Tb(NO3)3, or of nanoparticles of Tb2O3 or [Y2O3:50% Tb] from an alcoholic suspension. The chemical and nanostructural properties were analyzed by infrared spectrosco...

متن کامل

The effect of Ga-doping on the structural and optical properties of ZnO thin films prepared by spray pyrolysis

In this research, zinc oxide thin films with gallium impurity have been deposited using the spray pyrolysis technique. The structural and optical properties of these films are investigated as a function of gallium doping concentrations. The ZnO and ZnO:Ga  films grown at a substrate temperature of 350 ºC with gallium doping concentrations from 1.0 to 5.0.%. The XRD analysis indicated that ZnO f...

متن کامل

Non-thermal plasma-driven synthesis of Eu3+:Y2O3 nanosized phosphors

The synthesis of nanosized phosphors by using the non-thermal plasma-driven method is presented. The method allows to control the average grain size of nanocrystals. The synthesis of Eu3+-doped Y2O3 nanocrystalline phosphors at water solution of nitrates is described. The average sizes of nanocrystals were controlled by sintering temperature. Their structure, morphology, and luminescent propert...

متن کامل

Deposition of ultrathin rare-earth doped Y2O3 phosphor films on alumina nanoparticles

Ultrathin films of Eu3+ doped Y2O3 were deposited onto alumina nanoparticles using a unique solution synthesis method. The surface structure, composition, and morphology of the thin films deposited were analysed using high resolution transmission electron microscopy (TEM) and high angle annular dark field scanning TEM imaging and energy dispersive x-ray measurements. The films deposited were ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of colloid and interface science

دوره 262 2  شماره 

صفحات  -

تاریخ انتشار 2003